湖北省七市(州)教研协作体 2021 年高三年级 3 月联考 数学参考答案

一、单项选择题

题号	1	2	3	4	5	6	7	8
答案	D	A	В	В	C	A	D	С

二、多项选择题

题号	9	10	11	12
答案	AD	CD	ВС	BCD

三、填空题

13.
$$-\frac{3}{4}$$

14. 3

15. 1.26

16. $(1,\sqrt{5}]$

四、解答题

17. (1) 因为 $A+B+C=\pi$,所以 $A+C=\pi-B$,由 $4\cos(A+C)+2\cos 2B+3=0$,可得 $-4\cos B+2(2\cos^2 B-1)+3=0$,即 $4\cos^2 B-4\cos B+1=0$,

得 $\cos B = \frac{1}{2}$,因为 $0 < B < \pi$, 所以 $B = \frac{\pi}{2}$.

(2) 在 $\triangle ABD$ 中,由余弦定理可得 $AD^2 = AB^2 + BD^2 - 2AB \cdot BD \cos B$,

即
$$48 = 64 + BD^2 - 2 \times 8 \times BD \times \frac{1}{2}$$
,即 $BD^2 - 8BD + 16 = 0$,解得 $BD = 4$.

所以
$$S_{\triangle ABC} = 2S_{\triangle ABD} = 2 \times \frac{1}{2} \times AB \cdot BD \sin B = 2 \times \frac{1}{2} \times 8 \times 4 \times \frac{\sqrt{3}}{2} = 16\sqrt{3}$$
.

18. (1) 因为 $\begin{cases} a_1 + a_3 = 10 \\ S_5 = 35 \end{cases}$,所以 $\begin{cases} a_1 + d = 5 \\ a_1 + 2d = 7 \end{cases}$,解得 $\begin{cases} a_1 = 3 \\ d = 2 \end{cases}$,

所以 $a_n = a_1 + (n-1)d = 2n+1$.

(2) 由(1)得: $3b_1 + 5b_2 + 7b_3 + ... + (2n+1)b_n = 1 + (2n-1)2^n$,①

所以 $3b_1 + 5b_2 + 7b_3 + ... + (2n-1))b_{n-1} = 1 + (2n-3)2^{n-1}(n...2)$,②

两式相减得: $(2n+1)b_n = (2n+1)2^{n-1}(n...2)$,所以 $b_n = 2^{n-1}(n...2)$,

又由①式得 $b_1 = 1$,适合上式,所以 $b_n = 2^{n-1} (n \in N^*)$.

所以 $\frac{1}{a \cdot (\log_2 h_{--})} = \frac{1}{(2n+1)(2n+3)} = \frac{1}{2} \left(\frac{1}{2n+1} - \frac{1}{2n+3} \right)$,

所以 $T_n = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{1}{2n+1} - \frac{1}{2n+3} \right) = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{2n+3} \right) = \frac{n}{6n+9}$.

19. (1) 因为 ABCD 是直角梯形, $AB \parallel DC$, $\angle BAD = 90^{\circ}$, 所以 $AD \perp DC$, 又因为 $PD \perp DC$, $PD \cap AD = D$, 所以 $CD \perp$ 平面 PAD , 又因为 $PA \subset$ 平面 PAD , 所以 $CD \perp PA$,

2分

3分

取 CD 的中点 E ,连接 BE ,在 $Rt\triangle BCE$ 中, BC=2 , CE=1 ,可得 $BE=\sqrt{3}$, 所以 $AD=\sqrt{3}$,又 PD=2PA=2 ,所以 $PA^2+AD^2=PD^2$,所以 $PA\perp AD$, 4 分 又 $AD\cap CD=D$,所以 $PA\perp$ 平面 ABCD .

(2) 以 A 为原点,分别以 AB , AD , AP 所在直线为 x , y , z 轴建立空间直角坐标系,则 B(1,0,0) , $D(0,\sqrt{3},0)$, P(0,0,1) , 所以 $\overline{BP} = (-1,0,1)$, $\overline{BD} = (-1,\sqrt{3},0)$,

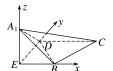
设平面 PBD 的法向量 $\mathbf{m} = (x, y, z)$, 由 $\begin{cases} \overline{BP} \cdot \mathbf{m} = -x + z = 0 \\ \overline{BD} \cdot \mathbf{m} = -x + \sqrt{3}y = 0 \end{cases}$

得
$$\begin{cases} -x + z = 0 \\ -x + \sqrt{3}y = 0 \end{cases}$$
, 令 $y = 1$, 得 $m = (\sqrt{3}, 1, \sqrt{3})$,

设 $M(x_0,y_0,z_0)$,由 $\overline{BM}=\lambda\overline{BD}(0<\lambda<1)$,得 $(x_0-1,y_0,z_0)=\lambda(-1,\sqrt{3},0)$,

所以 $M(1-\lambda,\sqrt{3}\lambda,0)$,所以 $\overline{AP}=(0,0,1)$, $\overline{AM}=(1-\lambda,\sqrt{3}\lambda,0)$,

设平面 PAM 的法向量 $\mathbf{n} = (x_1, y_1, z_1)$,由 $\left\{ \overline{AP} \cdot \mathbf{n} = 0 \atop \overline{AM} \cdot \mathbf{n} = 0 \right\}$



得
$$\begin{cases} z_1 = 0 \\ (1 - \lambda)x_1 + \sqrt{3}\lambda y_1 = 0 \end{cases}, \quad \diamondsuit x_1 = \sqrt{3}\lambda \; ,$$

得平面 PAM 的一个法向量为 $\mathbf{n} = (\sqrt{3}\lambda, \lambda - 1, 0)$.

9分

1分

设二面角A-PM-B的平面角为 θ ,

所以c=1.

则有
$$\cos \theta = \frac{\mathbf{n} \cdot \mathbf{m}}{|\mathbf{n}||\mathbf{m}|} = \frac{3\lambda + \lambda - 1}{\sqrt{7}\sqrt{(\sqrt{3}\lambda)^2 + (\lambda - 1)^2}} = \frac{4\lambda - 1}{\sqrt{7}\sqrt{4\lambda^2 - 2\lambda + 1}} = \frac{\sqrt{7}}{7}$$

解得
$$\lambda = 0$$
或 $\lambda = \frac{1}{2}$,因为 $0 < \lambda < 1$,所以 $\lambda = \frac{1}{2}$.

20. (1) 椭圆的左右焦点分别为 $F_1(-c,0)$, $F_2(c,0)$,而双曲线 C_2 : $x^2 - \frac{y^2}{4} = 1$ 的顶点分别为(-1,0),(1,0),

又椭圆的上顶点为(0,b), 而双曲线 C_2 : $x^2 - \frac{y^2}{4} = 1$ 的一条渐近线为y = 2x,

则有
$$\frac{|b|}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$
,解得 $b=1$.

$$\therefore a^2 = 1^2 + 1^2 = 2$$
,所以椭圆 E 的方程为 $\frac{x^2}{2} + y^2 = 1$.

(2) 设直线l的方程为x = ty - 1,(t - 定存在),代入 $x^2 + 2y^2 = 2$,并整理得 $(t^2 + 2)x^2 - 2ty - 1 = 0$,

 $\triangle = 4t^2 + 4(t^2 + 2) > 0$ 恒成立,设 $M(ty_1 - 1, y_1)$, $N(ty_2 - 1, y_2)$,

则
$$y_1 + y_2 = \frac{2t}{t^2 + 2}$$
, $y_1 y_2 = \frac{-1}{t^2 + 2}$.

设
$$P(x_0, y_0)$$
,由 $\overline{F_2P} = \overline{F_2M} + \overline{F_2N}$,得 $\begin{cases} x_0 - 1 = ty_1 - 2 + ty_2 - 2 \\ y_0 = y_1 + y_2 \end{cases}$,

即
$$\begin{cases} x_0 = t(y_1 + y_2) - 3 = -\frac{t^2 + 6}{t^2 + 2} \\ y_0 = y_1 + y_2 = \frac{2t}{t^2 + 2} \end{cases}$$
,又点 P 在椭圆 C_1 上,故 $\frac{(t^2 + 6)^2}{2(t^2 + 2)^2} + \frac{4t^2}{(t^2 + 2)^2} = 1$,

即
$$t^4 - 12t^2 - 28 = 0$$
,解得 $t^2 = 14$ (舍负),

因为满足 $\overline{F_2P} = \overline{F_2M} + \overline{F_2N}$ 的点P也在椭圆 C_1 上,所以四边形 F_2MPN 是平行四边形,

设四边形 F_2MPN 的面积为S,则有

$$S = |F_1 F_2| ||y_1 - y_2| = 2\sqrt{(y_1 + y_2)^2 - 4y_1 y_2} = 2\sqrt{\frac{4t^2 + 4(t^2 + 2)}{(t^2 + 2)^2}} = \frac{4\sqrt{2(t^2 + 1)}}{t^2 + 2},$$

代入
$$t^2 = 14$$
,得四边形 F_2MPN 的面积 $S = \frac{\sqrt{30}}{4}$.

21. (1) 当n=2时,一个系统有 3 个电子元件,则一个系统需要维修的概率为 $C_3^2(\frac{1}{2})^3+(\frac{1}{2})^3=\frac{1}{2}$ 1 分设 及X 为该电子产品需要维修的系统个数,则 $X \square B(3,\frac{1}{2})$, $\xi=500X$ 2 分

$$\therefore P(\xi = 500k) = P(X = k) = C_3^k \left[(\frac{1}{2})^k \left[(\frac{1}{2})^{3-k}, k = 0, 1, 2, 3 \right] \right]$$

: ξ 的分布列为

ξ	0	500	1000	1500
P	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

$$\therefore E\xi = 500 \times 3 \times \frac{1}{2} = 750$$

(2) 记 2k-1 个元件组成的系统正常工作的概率为 p_k . 2k-1 个元件中有 i 个正常工作的概率

为
$$C_{2k-1}^{i}p^{i}(1-p)^{2k-1-i}$$
,因此系统工常工作的概率 $p_{k} = \sum_{i-k}^{2k-1}C_{2k-1}^{i}p^{i}(1-p)^{2k-1-i}$. 7分

在 2k – 1 个元件组成的系统中增加两个元件得到 2k + 1 个元件组成的系统,则新系统正常工作可分为下列情形:

(a) 原系统中至少有
$$k+1$$
 个元件正常工作,概率为 $p_k - C_{2k-1}^k p^k (1-p)^{k-1}$; 8 分

(b) \mathbb{R} 原系统中恰有 k 个元件正常工作,且新增的两个元件至少有 1 个正常工作,

概率为
$$[1-(1-p)^2]C_{2k-1}^kp^k(1-p)^{k-1}$$
; 9分

(c) 原系统中恰有k-1个元件正常工作,且新增的两个元件均正常工作,

概率为
$$p^2 C_{2k-1}^{k-1} p^{k-1} (1-p)^k$$
. 10 分

因此,
$$p_{k+1} - p_k = p^2 C_{2k-1}^{k-1} p^{k-1} (1-p)^k + [1-(1-p)^2] C_{2k-1}^k p^k (1-p)^{k-1} - C_{2k-1}^k p^k (1-p)^{k-1}$$

$$= p^{k} (1-p)^{k} C_{2k-1}^{k-1} (2p-1)$$

故当 $p > \frac{1}{2}$ 时, p_k 单调增加,增加两个元件后,能提高系统的可靠性. 12 分

22. (1)
$$f'(x) = \frac{x \cdot e^x - e^x + 1}{x^2} = \frac{e^x}{x^2} (x - 1 + e^{-x})$$
,

易证当 $x \neq 0$ 时, $e^x > x+1$,则 $e^{-x} > -x+1$,即 $e^{-x} + x-1 > 0$, 所以f'(x) > 0,故f(x)在 $(-\infty,0)$, $(0,+\infty)$ 上单调递增.

(2) 由题意得 $\forall x > 0$, $\frac{e^x - 1}{r} - 2 \ln x ... k$,

令 $F(x) = \frac{e^x - 1}{x} - 2 \ln x$,要证: $\lambda > 1.1$,即证 F(x) > 1.1.

$$F'(x) = \frac{x \cdot e^x - e^x + 1}{x^2} - \frac{2}{x} = \frac{x \cdot e^x - e^x - 2x + 1}{x^2},$$

 $\Rightarrow g(x) = x \cdot e^x - e^x - 2x + 1$, $y = y'(x) = x \cdot e^x - 2$, $y''(x) = (x+1) \cdot e^x > 0$,

所以g'(x)在 $(0,+\infty)$ 上单调递增,又g'(0)=-2<0,g'(1)=e-2>0,

故
$$\exists x_0 \in (0,1)$$
 , 使得 $g'(x_0) = 0$, 即 $e^{x_0} = \frac{2}{x_0}$.

所以 $\forall x \in (0, x_0)$, 有 g'(x) < 0, g(x) 单调递减;

 $\forall x \in (x_0, +\infty)$, g'(x) > 0, g(x) 单调递增.

所以
$$g(x)$$
... $g(x_0)$, $g(0) = 0$, $g(x_0) = x_0 \cdot e^{x_0} - e^{x_0} - 2x_0 + 1 = 2 - \frac{2}{x_0} - 2x_0 + 1 < 0$,

$$g(\frac{3}{2}) = \frac{1}{2}e^{\frac{3}{2}} - 2 > 0$$
,所以存在 $x_1 \in (x_0, \frac{3}{2})$,使得 $g(x_1) = 0$,

即 $e^{x_1} = \frac{2x_1 - 1}{x_1 - 1}$,且满足 $\forall x \in (0, x_1)$, F'(x) < 0, F(x) 单调递减;

 $\forall x \in (x_1, +\infty)$, F'(x) > 0, F(x) 单调递增;

所以
$$F(x)$$
... $F(x_1) = \frac{e^{x_1} - 1}{x_1} - 2\ln x_1 = \frac{1}{x_1 - 1} - 2\ln x_1$.

令 $h(x) = \frac{1}{x-1} - 2\ln x$,则 $h'(x) = \frac{-1}{(x-1)^2} - \frac{2}{x} < 0$,故 h(x) 单调递减,

又
$$x_1 < \frac{3}{2}$$
,所以 $h(t) > h(\frac{3}{2}) = 2(1 - \ln \frac{3}{2})$.

则只需证明 $2(1-\ln\frac{3}{2}) > 1.1 \Leftrightarrow \ln\frac{3}{2} < 0.45 \Leftrightarrow \frac{3}{2} < e^{0.45} \Leftrightarrow (\frac{3}{2})^{20} < e^9$,

又 e >
$$\frac{8}{3}$$
 = 2·6 ,可先证明 $(\frac{3}{2})^{20}$ < $(\frac{8}{3})^9$,又 3^5 = 243 , 2^8 = 256 ,则 3^5 < 2^8 ,

所以
$$3^{30} < 2^{48} \Leftrightarrow (\frac{3}{2})^{21} < (\frac{8}{3})^9$$
,而 $(\frac{3}{2})^{20} < (\frac{3}{2})^{21}$,所以 $(\frac{3}{2})^{20} < (\frac{8}{3})^9 < e^9$,证毕!

注: 关于 $2(1-\ln\frac{3}{2})>1.1\Leftrightarrow \ln\frac{3}{2}<0.45$ 的证明下面再给出一种证法:

由对数均值不等式(需要证明)得
$$\sqrt{3\times2} < \frac{3-2}{\ln 3 - \ln 2}$$
,即 $\ln 3 - \ln 2 < \frac{\sqrt{6}}{6}$,

又
$$\frac{1}{6}$$
<0.45²,所以 $\ln \frac{3}{2} = \ln 3 - \ln 2 < 0.45$,证毕!